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Abstract
Presence of SU(n) or other Lie  group symmetry in a physical system is its 

powerful, usually underutilized property. In many cases it allows for finding 

analytical solutions to nonlinear differential equations describing this system. 

Power of the method is presented on diversified examples from mathematical 

physics: Lie-group symmetries in finding solutions of generalized, 

multidimensional theory of gravity; analytical Dirac–equation solutions for 

description of conducting polymers; stability of qubit states in quantum 

computers; spatial defects in condensed matter; reconstruction of 3D object 

from its 2D tomographic image; significant improvement of numerical solutions 

stability for Euler equations. The next question after obtaining such Lie group 

symmetric solution is: does a generalized solution with appropriate quantum 

group symmetry exists for the given physical system, and if yes what is the 

physical meaning of the deformation parameter q introduced by such solution. 

In many cases it can be identified. Any SU(n) solution is by its nature singular,  

assuming a perfect symmetry of the physical system discussed. Such solution 

gives a powerful insight to theoretical physics, yet the assumption may be too 

demanding for experimental applications.  Deformation parameter q from a 

quantum group symmetry allows for a continuum of solutions, more applicable 

to experiments. 



34/5/21

In memory of Zbigniew Oziewicz

UNAM Campo Quarto, Cuautitlan, Mexico, 
August 2000



44/5/21

Yucatan, 2006
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Introduction

• Numerical methods are the standard approach to solving Nonlinear Differential Equations (NDE), and 

linear differential equations on manifolds with curvature.

• Analytical solutions remain useful:

- verification of computer codes

- enhancing numerical stability

- analysis how a change of a parameter value or initial conditions modifies the solution (it is a non-intuitive 

if process is nonlinear.)

• Analytical solutions are in general difficult to find – new methods are needed. 

• NDEs solutions are not unique.  Correct selection of the relevant solution is crucial. 

• Lie- group symmetries and quantum group symmetries are very effective tools in finding new analytical 

solutions for various NDEs. 

• Applying a physical system’s symmetry produces the NDE solution describing this system, not just any of 

the possible solutions. 

Applying analytical solutions strengthens not substitutes numerical methods. 
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Overview

• Applying SU(n) and other Lie group symmetries of physical systems to solving 

differential equations

– Analytical Dirac equation solutions for description of conducting polymers

– Numerical stability of Euler equation

• Never impose a non-existing symmetry on a physical system

– Reconstruction of 3D object from its 2D tomographic image

– Multi layer neural net

• Quantum group type generalizations of the Lie group symmetry solutions

– Stability of qubit states in quantum computers 

– Generalized gravitation theory

– Classification and evolution of dislocations in continuous media

Genuine Lie and quantum group symmetries allow for finding new analytical solutions for 
nonlinear differential equations.
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Applying SU(n) and other Lie Group Symmetries of 

Physical Systems to Solve Differential Equations

• Nonlinear Differential Equations (NDEs) and some linear differential equations on curved manifolds 

present a significant challenge in finding the analytical solutions. 

• Most methods of finding a solution start from guessing the type of function (trigonometric, 

exponential, polynomial, logarithmic…) and finding the correct parameters. 

• Not all solutions have physical meaning.  (Example: Maxwell equations solution traveling back in 

time.)

• Physical solutions of  NDE obey the symmetry of the physical system the equations describe. 

• Symmetry of the physical system provides the initial “guess” of the form of the solution.

• Let us see how the SU(n) based method works on real examples…
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Analytical Dirac Equation Solutions for Description of 

Conducting Polymers

Conducting polymer polyaniline: grey carbon, purple nitrogen, white hydrogen

• A. Proń, J. Laska, J.E Ӧsterholm. P. Smith, Polymer, 34, (1993), 4235

• J. Laska, M. Trznadel, A. Proń, Materials Science Forum, 122, (1993), 177

• J. Laska, PhD thesis, Warsaw University of Technology, (1994)

• H. Makaruk, Dirac description of energy levels of polarons in polyaniline, Mod. Phys. Lett. B, 9, (1995), 543-551; 

• H. Makaruk, Multidimensional Quantum Description of Organic Conductors, Acta Phys. Pol. B, 27, (1996), 2747-2754

• Polarons are charge carriers inside extremely long macromolecules of polymers like polyaniline, allowing electric 
conductivity.

• Usual polyaniline samples are prepared so that macromolecules underlie SU(2) symmetry - it gives 1D conductivity to a 
3D sample of the material

• Creation/annihilation of polarons is a relativistic phenomenon –it requires Dirac not Schrödinger description.
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Construction of a Spinor Bundle over SU(2) Manifold

Spectrum of the Dirac operator on S3 : ±(n+3/2) mo, 
where n – integer, mo – experimental scaling factor. 
The energy spectrum experimentally measured for polarons in polyaniline has energy 
levels equally spaced, exactly as the above spectrum of the Dirac operator over SU(2).
In contrast, numerical Schrödinger-based approximations were not equally spaced and 
were missing one of the energy levels measured in experiments. 

• Dirac equation on a curved SU(2) manifold becomes nonlinear.
• SU(2) and S3 manifolds are equivalent => spinor structures over SU(2) and S3 are isomorphic. 
• Spinor structure construction:

𝑆𝑝𝑖𝑛(3) ≅ 𝑆𝑈(2)

↓

→ 𝑆𝑈(2) × 𝑆𝑈(2) ≅ 𝑆𝑝𝑖𝑛(4)

↓
𝑆𝑂(3) → 𝑆𝑂(4)

↓
𝑆3

where
• horizontal arrows mean actions of groups on spaces, vertical arrows are covering maps.
• Dirac operator acts on the vector bundle associated with the principal bundle representing 

spinor structure.
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Numerical Stability of Euler Equation

• Z. Peradzyński, R. Owczarek, H. Makaruk, On group-theoretic finite-mode approximation of 2 dimensional ideal 

hydrodynamics I. The proof, LA-UR 11-06945, 2011

• Euler equation for incompressible fluid is applied in a wide range of numerical computations including weather 
prediction. 

• Galerkin method is a standard numerical approach to solving Euler equation. It is numerically unstable. 
• Numerical instability limits achievable evolution time of the system, for example time of  accurate weather prediction.

su(n) –based method of solving Euler equation
Structure constants of su(N)-> Structure constants of sdiff(T2) when N--> ∞,

su(N) – Lie algebra;            N odd;        sdiff(T2) – area preserving diffeomorphisms of 2D torus;

• Solutions of Euler equations associated with su(N) algebras converge to solutions of Euler equations of incompressible 
fluid on a 2D torus. 

• SU(N) based approximation of Euler equation is significantly less computationally efficient than the Galerkin method, 
yet computational resources are becoming more and more affordable. 

SU(N) based approximation of Euler equation is computationally stable for significantly 
(order of magnitude) longer system evolution time than the standard Galerkin method. 
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Never impose non-existing 

symmetry on a system

• Mathematics exists by itself: differential equations have solutions regardless of the physical validity of 

the assumptions. 

• Making up a symmetry to solve NDEs allows to find a solution, unfortunately not the correct one. 

• No one knowingly picks a wrong solution, so why does it happen so frequently in science?

– Implicit assumptions are not examined. 

– Intuition from linear equations is misleading for nonlinear ones. 

– Incorrect solutions may initially look quite reasonable.

Imposing a non-existing symmetry can be dangerously misleading.
It produces reasonably looking yet truly incorrect results.
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Multi Layer, Sparsely Connected Neural Net

Two layers neural network with 

densely connected nodes. 

Input                         Output       

V. Beiu, H.E. Makaruk, Deeper Sparsely Nets are Optimal, Neural Processing Letters, 8, (1998); 

• In 90’ early neural nets had two layers, 
maximizing number of connections from 
each noddle.

• Neural net expert Valeriu Beiu had a 
strong intuition that deep, multi layer 
neural net architecture with sparsely 
connected nodes was optimal, yet cost 
function calculations seemed to show the 
opposite.

• Problem: applying in calculation n-D 
circumscribing balls as appear limits of the 
real n-D cost function volumes was 
inversing the order of bigger and smaller 
volumes. 

• Calculation of the real n-D volumes 
corrected the problem. 

• Almost all modern AI architecture is multi 
layer with sparsely connected nodes.

Multi layers neural network with 
sparsely connected nodes. 

two 
layers

Advantage of multi layer small fan-in neural net over two layers infinite fan-in net becomes 
visible when n-dimensional volumes were calculated exactly, not upper-limited by n-D balls.
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How was it possible to inverse order of bigger and smaller volumes by a simple and self-
consistent approximation?

The bigger of two volumes can be circumscribed in a smaller ball, when all of its dimensions are almost equal.  The 
smaller volume, which has a very different size in each dimensions requires a bigger ball to circumscribe it in.  
For high dimensional objects the problem illustrated here is getting exacerbrated with each additional dimension. 

• Calculation of a N-D volumes bounded by analytically defined N-1 surfaces are demanding.
• N-D ball volume is known for any N, so it is easy to substitute in calculations all 

complicated  N-D volumes by  N-D balls circumscribing them. 
• Easy does not mean correct. 
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Physical 
system

Image of Sun corona, NASA

NDEs 
describing 
the system

Space of all possible solutions

Solution 
for our
system

We do not need to find any solution of the given set of nonlinear differential equations 
(NDEs), we need exclusively the solution related to the physical system in question.
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Abel Inversion: Reconstruction of 3D Object from its 2D Tomographic Image

• Hanna Makaruk, Robert Owczarek, Analytical Approach to Geometric Errors in Radiography: Inverse Abel 

Transform for a Homogeneous Ball, LA-UR-11-07118, Hadronic Journal, vol.35, No5, October 2012, 509 

Direct Abel transform (a kind of Radon transform) is 
equivalent to making a physical radiograph, integrating 
along paths through the object. It maps densities (g/cm3) 
to areal densities (g/cm2).  
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• Any deviation from the axial symmetry (axis shift, shape deviation) systematically alters reconstructed density values.  
• Small alterations escape common sense checking of numerical results. Only drastic effects like negative density areas 

are noticeable. 
• After loss of axial symmetry other additional information needs to be provided to make the solution unique.
• Additional analytical transformation of the results of failed inverse Abel called Generalization of Inverse Abel Transform 

allows for reconstruction of the original densities from a single radiogram despite loss of the axial symmetry. 

Abel Inversion reconstruction of a non axially symmetric object is mathematically doable, 
yet it produces nonphysical, sometimes even negative densities.
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Abel Inverse Transform for off-axis objects creates 

unphysical negative densities 

Steel balls shifted from inversion axis 
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Abel Inverse density reconstruction from a radiogram 

of 3D  off – axis blobs of matter 

Example of four shapes producing different 
reconstructed density, when distance from 
the axis and the total mass is preserved
___rotated cube
___ cube faces diagonal to detector
___ ball 
___ ellipsoid 
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Mathematics is exact.  Engineering introduces a finite precision. 

Quantum groups to the rescue!

• Lie – group symmetric  NDE solutions are exact, singular. No neighborhood of approximate solutions exists around them. 

• Real physics/engineering implementations are achievable with a finite precision only

=>  Lie symmetric solutions should be impossible to achieve in macroscopic physical world.

• Multiple examples show that Lie-symmetric solutions properly describe experimental data, how is it possible? 

• Lie-group symmetry is a very reach mathematical structure. Not all of the properties are necessary for the NDE solution. 

• In many cases assumptions can be relaxed from Lie group to a quantum group, preserving existence of the solution. 

• This generalization changes a singular Lie-solution into a 1D continuous family of solutions parametrized by quantum 
group deformation parameter.

• Deformation parameter allows for flexible experimental implementation of the solution. 

• Deformation parameter connects between Lie groups allowing physical systems for evolution between two Lie-
symmetrical solutions. 

• Multi –parameter quantum groups are responsible for higher than 1D continuous  families of solutions.

• Lie –symmetric solution gains by its quantum group 

generalization a neighborhood, it is no longer singular.

• This allows for macroscopic physical implementation.

Physical meaning of the quantum group 
deformation parameter is the key to application 
of the quantum group symmetric solutions.
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Stability of qubit states in quantum computers 

• P. Zanardi, M. Rassetti, Noiseless quantum codes, Phys. Rev. Lett., 79, 3306-3309, (1997)

• P. Zanardi, M. Rassetti, Error avoiding quantum codes, Mod Phys. Lett. B, 25, 1085-1093

• M. Durdevich, H. Makaruk, R. Owczarek, Generalized noiseless quantum codes utilizing quantum enveloping 

algebras, J. Phys. A: Math. Gen., 34, (2001), 1423-1437

Implementation of the continuous family  of quantum group symmetric solutions is 
experimentally much easier than achieving a singular Lie-group symmetric state. 

• In quantum computing minimizing appearance of quantum state errors is a fundamental issue. 
• Zanardi and Rassetti  predicted existence of error protected quantum  states preserved during the evolution. 
• This quantum state  error-avoiding property  is based on a dynamical Lie algebra - symmetry of the state. 
• It is extremely challenging to physically build quantum states possessing exact Lie – group symmetry. 

• Analysis of the quantum state evolution preservation shows that possessing a Haar measure by a system’s 
symmetry is the only mathematical property necessary for construction of an error -avoiding  quantum state. 

• Locally compact Lie groups and locally compact quantum groups both possess Haar measure.
=> quantum state symmetry can be weaker than a Lie - group, a quantum group symmetry is sufficient. 

• This  observation generalizes a discrete solution to a 1-parameter family of solutions. 
• In a physical system allowing a one parameter deformation means that  a  restricted deformation of the 

“perfect” quantum state becomes possible. This makes a fundamental difference in engineering. 
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Discussion about relativity theory with Professor Mickiewicz
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Lie Algebra Solutions of Generalized Theory of Gravity

• J.J. Sławianowski, Field of linear frames as a fundamental self interacting system, Rep. Math. Phys., 22, 323-371, 1985

• J.J. Sławianowski, Space time as a micromorphic continuum, Int. J. Theor. Phys., 29, 1177-1184, 1990.

• H. Makaruk, Lie Groups and Quantum Groups Applied as a Tool in Finding Solutions in Some Field Theories, Rep. Math. 

Phys., 36, (1995), 347-353;

• H. Makaruk Real Lie Algebras of Dimension d less or equal 4 which fulfill the Einstein Equation, Rep. Math. Phys., 32, 

(1993), 375-383; 

General relativity has quantum group solutions.  

• Complete classification of the 3D and 4D Lie algebras is known.
• All these algebras have been checked, if any of them fulfills the Einstein equation in field theory formulation 

expressed  by Weitzenböck invariants. 
• All four 4D Lie-algebraic solutions that exist, have been identified with known cosmological solutions of the Einstein 

equation: 
• Abel algebra solution is identified with the flat vacuum solution of the Einstein equations. 
• Solutions A1 x Bianchi VIo and A1 x Bianchi VII also possess vanishing Riemann tensors – these are flat cosmological 

solutions too. 
• The  truly 4D Lie algebra known as A 4,6 in Patera –Winternitz classification is equivalent to a non-flat cosmological 

solution, known as the Petrov solution with  parameter k2=4/3
• More Lie algebraic solutions have been recently found for multidimensional formulation of Einstein equation. 
• We have shown that when a quantum group generalization of any of the existing solutions is defined, such quantum 

group automatically fullfills the Einstein equation. 
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Classification and Evolution of Dislocations in 

Continuous Media

• A. Trzęsowski, J.J. Sławianowski, Global Invariance and Lie-algebraic description in the theory of dislocations, Int. J. Theor. 

Phys., 29, 1239-1249, 1990

• A. Trzęsowski, , Gauge theory of dislocations, Int. J. Theor. Phys., 26, 1059-1068, 1987

• A. Trzęsowski, , Geometry of crystal structure with defects, I. Euclidian picture, II. Non-Euclidian picture, Int. J. Theor. Phys., 26, 

311-355, 1987 

• H. Makaruk, Description of Dislocations: Quantum Groups Methods, J. Tech. Phys., 37, (1996), 95-100 

Quantum group parameter q describes the process of dislocation formation 
responsible in engineering for materials aging.

• Trzęsowski and Sławianowski provided classification of all possible  3D dislocations in continuous media using  
Bianchi classification of all 3D Lie algebras. 

• This classification includes dislocations described by the simple 3D algebras, for which the quantum group 
generalizations exist. 

• Construction used for Lie algebras can be repeated for quantum groups. 
• Quantum group parameter q is in this theory a deformation parameter, which describes a continuous evolution of 

a given dislocation between Abel group symmetry and a dislocation with symmetry provided by a Lie group 
counterpart of a given quantum group. 

• Formation of dislocations in  various materials is a process crucial for many branches of engineering. It describes 
materials’ aging, for example changing properties of concrete due to aging of  buildings and other constructions. 
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Summary and Further Work
• Finding the correct analytical solution for sets of Nonlinear Differential Equations (NDEs) describing

a physical system is still important, it strengthens the numerical approach. Examples: 

- Stability of Euler equation.

- Correcting Abel Inversion software.

- Optimizing architecture of neural network chips for AI applications.

- Error protected states in quantum computers.

• Application of the SU(n) or other Lie symmetry is an effective  method of finding analytical solutions of NDEs. 

• Imposing a non-existing symmetry on the NDEs produces a misleading  non-physical solution. 

• Lie group symmetric solutions are singular. 

• Lie –symmetric solution gains by its quantum group generalization a neighborhood, is no longer singular. As 

such they can be implemented in macroscopic physical systems.

• Hypothesis – Lie-symmetric applicable to physics posses neighborhoods, even if our constructions have not 

found these neighborhoods yet.

It is only a beginning, the symmetry method in solving nonlinear differential equations has 
much more to offer.
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